Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.582
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 109, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600583

RESUMO

BACKGROUND: The intravesical instillation of the paclitaxel-hyaluronan conjugate ONCOFID-P-B™ in patients with bacillus Calmette-Guérin (BCG)-unresponsive bladder carcinoma in situ (CIS; NCT04798703 phase I study), induced 75 and 40% of complete response (CR) after 12 weeks of intensive phase and 12 months of maintenance phase, respectively. The aim of this study was to provide a detailed description of the tumor microenvironment (TME) of ONCOFID-P-B™-treated BCG-unresponsive bladder CIS patients enrolled in the NCT04798703 phase I study, in order to identify predictive biomarkers of response. METHODS: The composition and spatial interactions of tumor-infiltrating immune cells and the expression of the most relevant hyaluronic acid (HA) receptors on cancer cells, were analyzed in biopsies from the 20 patients enrolled in the NCT04798703 phase I study collected before starting ONCOFID-P-B™ therapy (baseline), and after the intensive and the maintenance phases. Clinical data were correlated with cell densities, cell distribution and cell interactions. Associations between immune populations or HA receptors expression and outcome were analyzed using univariate Cox regression and log-rank analysis. RESULTS: In baseline biopsies, patients achieving CR after the intensive phase had a lower density of intra-tumoral CD8+ cytotoxic T lymphocytes (CTL), but also fewer interactions between CTL and macrophages or T-regulatory cells, as compared to non-responders (NR). NR expressed higher levels of the HA receptors CD44v6, ICAM-1 and RHAMM. The intra-tumoral macrophage density was positively correlated with the expression of the pro-metastatic and aggressive variant CD44v6, and the combined score of intra-tumoral macrophage density and CD44v6 expression had an AUC of 0.85 (95% CI 0.68-1.00) for patient response prediction. CONCLUSIONS: The clinical response to ONCOFID-P-B™ in bladder CIS likely relies on several components of the TME, and the combined evaluation of intra-tumoral macrophages density and CD44v6 expression is a potentially new predictive biomarker for patient response. Overall, our data allow to advance a potential rationale for combinatorial treatments targeting the immune infiltrate such as immune checkpoint inhibitors, to make bladder CIS more responsive to ONCOFID-P-B™ treatment.


Assuntos
Carcinoma in Situ , Ácido Hialurônico/análogos & derivados , Paclitaxel/análogos & derivados , Neoplasias da Bexiga Urinária , Humanos , Bexiga Urinária/patologia , Ácido Hialurônico/uso terapêutico , Vacina BCG/uso terapêutico , Microambiente Tumoral , Paclitaxel/uso terapêutico , Neoplasias da Bexiga Urinária/patologia , Carcinoma in Situ/tratamento farmacológico , Carcinoma in Situ/patologia , Adjuvantes Imunológicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico
2.
Cell Stem Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38663406

RESUMO

Due to the limitations of autologous chimeric antigen receptor (CAR)-T cells, alternative sources of cellular immunotherapy, including CAR macrophages, are emerging for solid tumors. Human induced pluripotent stem cells (iPSCs) offer an unlimited source for immune cell generation. Here, we develop human iPSC-derived CAR macrophages targeting prostate stem cell antigen (PSCA) (CAR-iMacs), which express membrane-bound interleukin (IL)-15 and truncated epidermal growth factor receptor (EGFR) for immune cell activation and a suicide switch, respectively. These allogeneic CAR-iMacs exhibit strong antitumor activity against human pancreatic solid tumors in vitro and in vivo, leading to reduced tumor burden and improved survival in a pancreatic cancer mouse model. CAR-iMacs appear safe and do not exhibit signs of cytokine release syndrome or other in vivo toxicities. We optimized the cryopreservation of CAR-iMac progenitors that remain functional upon thawing, providing an off-the-shelf, allogeneic cell product that can be developed into CAR-iMacs. Overall, our preclinical data strongly support the potential clinical translation of this human iPSC-derived platform for solid tumors, including pancreatic cancer.

3.
Chem Biol Interact ; : 111015, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663797

RESUMO

Hepatic fibrosis is a complex chronic liver disease in which both macrophages and hepatic stellate cells (HSCs) play important roles. Many studies have shown that clodronate liposomes (CLD-lipos) effectively deplete macrophages. However, no liposomes have been developed that target both HSCs and macrophages. This study aimed to evaluate the therapeutic efficacy of lipopolysaccharide-coupled clodronate liposomes (LPS-CLD-lipos) and the effects of liposomes size on hepatic fibrosis. Three rat models of hepatic fibrosis were established in vivo; diethylnitrosamine (DEN), bile duct ligation (BDL), and carbon tetrachloride (CCl4). Hematoxylin and eosin staining and serological liver function indices were used to analyze pathological liver damage. Masson's trichrome and Sirius red staining were used to evaluate the effect of liposomes on liver collagen fibers. The hydroxyproline content in liver tissues was determined. In vitro cell counting kit-8 (CCK-8) and immunofluorescence assays were used to further explore the effects of LPS modification and liposomes size on the killing of macrophages and HSCs. Both in vitro and in vivo experiments showed that 200 nm LPS-CLD-lipos significantly inhibited hepatic fibrosis and the abnormal deposition of collagen fibers in the liver and improved the related indicators of liver function. Further results showed that 200 nm LPS-CLD-lipos increased the clearance of macrophages and induced apoptosis of hepatic stellate cells, significantly. The present study demonstrated that 200 nm LPS-CLD-lipos could significantly inhibit hepatic fibrosis and improve liver function-related indices and this study may provide novel ideas and directions for hepatic fibrosis treatment.

4.
Chem Biol Interact ; : 111013, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663798

RESUMO

Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulphate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.

5.
Hum Exp Toxicol ; 43: 9603271241249990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38664950

RESUMO

The disruption of the immune system by viral attack is a major influencing factor in the lethality of COVID-19. Baicalein is one of the key effective compounds against COVID-19. The molecular mechanisms regarding the anti-inflammatory properties of Baicalein are still unclear. In this study, we established LPS-induced mice to elucidate the role of Baicalein in the treatment of acute lung injury (ALI) and its potential molecular mechanisms. In vivo experiments showed that Baicalein could significantly ameliorate LPS-induced acute lung injury and reduce proteinous edema in lung tissue. In addition, Baicalein inhibited M1 macrophage polarization, promote M2 macrophage polarization, and regulate inflammatory responses. Furthermore, Baicalein could inhibit the expression of protein molecules associated with pyroptosis and mitigate the lung tissue injury. In summary, we revealed the therapeutic effects of Baicalein in acute lung injury, providing the theoretical basis for its clinical application.


Assuntos
Lesão Pulmonar Aguda , Flavanonas , Lipopolissacarídeos , Macrófagos , Piroptose , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Animais , Piroptose/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/patologia , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia
6.
J Orthop Surg Res ; 19(1): 243, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622659

RESUMO

Inflammatory reactions are involved in the development of steroid-induced osteonecrosis of the femoral head(ONFH). Studies have explored the therapeutic efficacy of inhibiting inflammatory reactions in steroid-induced ONFH and revealed that inhibiting inflammation may be a new strategy for preventing the development of steroid-induced ONFH. Exosomes derived from M2 macrophages(M2-Exos) display anti-inflammatory properties. This study aimed to examine the preventive effect of M2-Exos on early-stage steroid-induced ONFH and explore the underlying mechanisms involved. In vitro, we explored the effect of M2-Exos on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells(BMMSCs). In vivo, we investigated the role of M2-Exos on inflammation, osteoclastogenesis, osteogenesis and angiogenesis in an early-stage rat model of steroid-induced ONFH. We found that M2-Exos promoted the proliferation and osteogenic differentiation of BMMSCs. Additionally, M2-Exos effectively attenuated the osteonecrotic changes, inhibited the expression of proinflammatory mediators, promoted osteogenesis and angiogenesis, reduced osteoclastogenesis, and regulated the polarization of M1/M2 macrophages in steroid-induced ONFH. Taken together, our data suggest that M2-Exos are effective at preventing steroid-induced ONFH. These findings may be helpful for providing a potential strategy to prevent the development of steroid-induced ONFH.


Assuntos
Reabsorção Óssea , Exossomos , Necrose da Cabeça do Fêmur , Osteonecrose , Ratos , Animais , Osteogênese , Exossomos/metabolismo , Cabeça do Fêmur/metabolismo , Osteonecrose/prevenção & controle , Inflamação/metabolismo , Macrófagos/metabolismo , Esteroides/efeitos adversos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/prevenção & controle , Necrose da Cabeça do Fêmur/metabolismo
7.
J Nanobiotechnology ; 22(1): 183, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622691

RESUMO

BACKGROUND: The use of cells as carriers for the delivery of nanoparticles is a promising approach in anticancer therapy, mainly due to their natural properties, such as biocompatibility and non-immunogenicity. Cellular carriers prevent the rapid degradation of nanoparticles, improve their distribution, reduce cytotoxicity and ensure selective delivery to the tumor microenvironment. Therefore, we propose the use of phagocytic cells as boron carbide nanoparticle carriers for boron delivery to the tumor microenvironment in boron neutron capture therapy. RESULTS: Macrophages originating from cell lines and bone marrow showed a greater ability to interact with boron carbide (B4C) than dendritic cells, especially the preparation containing larger nanoparticles (B4C 2). Consequently, B4C 2 caused greater toxicity and induced the secretion of pro-inflammatory cytokines by these cells. However, migration assays demonstrated that macrophages loaded with B4C 1 migrated more efficiently than with B4C 2. Therefore, smaller nanoparticles (B4C 1) with lower toxicity but similar ability to activate macrophages proved to be more attractive. CONCLUSIONS: Macrophages could be promising cellular carriers for boron carbide nanoparticle delivery, especially B4C 1 to the tumor microenvironment and thus prospective use in boron neutron capture therapy.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Boro , Linhagem Celular Tumoral , Nanopartículas/metabolismo , Macrófagos
8.
Heliyon ; 10(7): e29332, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623256

RESUMO

As one of the most common malignant tumors in the world, lung cancer has limited benefits for patients despite its diverse treatment methods due to factors such as personalized medicine targeting histological type, immune checkpoint expression, and driver gene mutations. The high mortality rate of lung cancer is partly due to the immune-suppressive which limits the effectiveness of anti-cancer drugs and induces tumor cell resistance. The currently widely recognized TAM phenotypes include the anti-tumor M1 and pro-tumor M2 phenotypes. M2 macrophages promote the formation of an immune-suppressive microenvironment and hinder immune cell infiltration, thereby inhibiting activation of the anti-tumor immune system and aiding tumor cells in resisting treatment. Analyzing the relationship between different treatment methods and macrophages in the TME can help us better understand the impact of TAMs on lung cancer and confirm the feasibility of targeted TAM therapy. Targeting TAMs to reduce the M2/M1 ratio and reverse the immune-suppressive microenvironment can improve the clinical efficacy of conventional treatment methods and potentially open up more efficient combination treatment strategies, maximizing the benefit for lung cancer patients.

9.
Respir Res ; 25(1): 174, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643159

RESUMO

BACKGROUND: Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. METHODS: Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. RESULTS: The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. CONCLUSION: The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, Senescence, PPARγ.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Idoso , PPAR gama , Macrófagos Alveolares/metabolismo , Estudos de Coortes , Asma/epidemiologia , Senescência Celular
10.
J Nanobiotechnology ; 22(1): 190, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637808

RESUMO

Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.


Assuntos
Lesão Pulmonar Aguda , Plantas Medicinais , Pneumonia Viral , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Mitocôndrias/patologia , Ácido gama-Aminobutírico/metabolismo , Pneumonia/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38579159

RESUMO

Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions between these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions between the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. Additionally, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aimed to reveal new insights into the molecular mechanisms that drive lung injury towards fibrosis and identify potential targets for therapeutic intervention. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

12.
Cell Rep Med ; 5(4): 101503, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593810

RESUMO

In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1ß secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-ß (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1ß and/or IFN-I signaling could represent a therapeutic approach for these patients.


Assuntos
Fasciite Necrosante , Interferon Tipo I , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Inflamação/metabolismo , Subunidade p50 de NF-kappa B
13.
Cell Rep ; 43(4): 114096, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607919

RESUMO

Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.


Assuntos
Antígenos de Neoplasias , Carcinogênese , Macrófagos Peritoneais , Animais , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Feminino , Camundongos , Carcinogênese/patologia , Carcinogênese/imunologia , Carcinogênese/metabolismo , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Apresentação Cruzada/imunologia , Linhagem Celular Tumoral , Fagossomos/metabolismo , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Actinas/metabolismo
14.
Cell Rep ; 43(4): 114120, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625796

RESUMO

Border-associated macrophages (BAMs) are tissue-resident macrophages that reside at the border of the central nervous system (CNS). Since BAMs originate from yolk sac progenitors that do not persist after birth, the means by which this population of cells is maintained is not well understood. Using two-photon microscopy and multiple lineage-tracing strategies, we determine that CCR2+ monocytes are significant contributors to BAM populations following disruptions of CNS homeostasis in adult mice. After BAM depletion, while the residual BAMs possess partial self-repopulation capability, the CCR2+ monocytes are a critical source of the repopulated BAMs. In addition, we demonstrate the existence of CCR2+ monocyte-derived long-lived BAMs in a brain compression model and in a sepsis model after the initial disruption of homeostasis. Our study reveals that the short-lived CCR2+ monocytes transform into long-lived BAM-like cells at the CNS border and subsequently contribute to BAM populations.


Assuntos
Encéfalo , Macrófagos , Monócitos , Receptores CCR2 , Animais , Receptores CCR2/metabolismo , Monócitos/metabolismo , Macrófagos/metabolismo , Camundongos , Encéfalo/patologia , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Homeostase
15.
Cancer Immunol Immunother ; 73(6): 102, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630304

RESUMO

Immune checkpoint inhibitors have revolutionized anti-tumor therapy, notably improving treatment responses in various tumors. However, many patients remain non-responsive and do not experience benefits. Given that Toll-like receptors (TLRs) can counteract tumor immune tolerance by stimulating both innate and adaptive immune responses, TLR agonists are being explored as potential immune adjuvants for cancer treatment. In this study, we assessed the potential of enhancing the efficacy of immune checkpoint inhibitors by activating innate immunity with a TLR5 agonist. In a mouse tumor model, combination therapy with TLR5 agonist and anti-PD-1 significantly inhibited tumor growth. The TLR5 agonist shifted the balance from M2-like to M1-like macrophages and upregulated the expression of co-stimulatory molecules in macrophages. Furthermore, TLR5 agonist promoted the activation and tumor infiltration of CD8+ T cells. As a result, the TLR5 agonist augmented the anti-tumor efficacy of anti-PD-1, suggesting its potential in modulating the tumor microenvironment to enhance the anti-tumor response. Our findings point toward the possibility of optimizing immune checkpoint inhibitor therapy using TLR5 agonists.


Assuntos
Neoplasias , Receptor 5 Toll-Like , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Macrófagos , Terapia Combinada , Modelos Animais de Doenças , Microambiente Tumoral
16.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635081

RESUMO

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos , Canal de Cátion TRPA1 , Animais , Camundongos , Acetanilidas , Bleomicina , Colágeno , Proteínas do Citoesqueleto , Camundongos Endogâmicos C57BL , Purinas , Canal de Cátion TRPA1/metabolismo
17.
Front Oncol ; 14: 1361327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655133

RESUMO

Tumors are genetic changes that develop in an organism as a result of many internal and external causes. They affect the biological behavior of cells, cause them to grow independently, and give rise to new, perpetually proliferating organisms. Recent research has supported the critical function of tumor-associated macrophages in the development, progression, and metastasis of tumors through efferocytosis. Yet, there is still much to learn about the mechanisms behind their contribution to tumor pathological processes. As a result, it's critical to actively investigate how cytosolic processes contribute to the growth of tumors and to create novel therapeutic approaches.

18.
Front Pharmacol ; 15: 1375993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659591

RESUMO

Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.

19.
J Nanobiotechnology ; 22(1): 197, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644475

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS: We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS: Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.


Assuntos
Artrite Reumatoide , Proliferação de Células , Vesículas Extracelulares , Inflamação , Macrófagos , MicroRNAs , Transdução de Sinais , Serina-Treonina Quinases TOR , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Macrófagos/metabolismo , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Sinoviócitos/metabolismo , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/genética , Humanos , Camundongos Endogâmicos DBA , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia
20.
Heliyon ; 10(8): e29340, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644829

RESUMO

Purpose: Concrete epidemiological evidence has suggested the mutually-contributing effect respectively between nonalcoholic fatty liver disease (NAFLD), type 2 diabetes mellitus (T2DM), and periodontitis (PD); however, their shared crosstalk mechanism remains an open issue. Method: The NAFLD, PD, and T2DM-related datasets were obtained from the NCBI GEO repository. Their common differentially expressed genes (DEGs) were identified and the functional enrichment analysis performed by the DAVID platform determined relevant biological processes and pathways. Then, the STRING database established a PPI network of such DEGs and topological analysis through Cytoscape 3.7.1 software along with the machine-learning analysis by the least absolute shrinkage and selection operator (LASSO) algorithm screened out hub characteristic genes. Their efficacy was validated by external datasets using the receiver operating characteristic (ROC) curve, and gene expression and location of the most robust one was determined using single-cell sequencing and immunohistochemical staining. Finally, the promising drugs were predicted through the CTD database, and the CB-DOCK 2 and Pymol platform mimicked molecular docking. Result: Intersection of differentially expressed genes from three datasets identified 25 shared DEGs of the three diseases, which were enriched in MHC II-mediated antigen presenting process. PPI network and LASSO machine-learning analysis determined 4 feature genes, of which the MS4A6A gene mainly expressed by macrophages was the hub gene and key immune cell type. Molecular docking simulation chosen fenretinide as the most promising medicant for MS4A6A+ macrophages. Conclusion: MS4A6A+ macrophages were suggested to be important immune-related mediators in the progression of NAFLD, PD, and T2DM pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...